

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Bathocuproine-Mediated Copper Transport through Liquid Membrane Driven by Redox Potential

Akira Ohki^a; Shugo Matsuno^b; Tadashi Takeda^b; Makoto Takagi^b; Keihei Ueno^b

^a CENTER OF INSTRUMENTAL ANALYSIS FACULTY OF ENGINEERING, KYUSHU UNIVERSITY HAKOZAKI, FUKUOKA, JAPAN ^b DEPARTMENT OF ORGANIC SYNTHESIS FACULTY OF ENGINEERING, KYUSHU UNIVERSITY HAKOZAKI, FUKUOKA, JAPAN

To cite this Article Ohki, Akira , Matsuno, Shugo , Takeda, Tadashi , Takagi, Makoto and Ueno, Keihei(1982) 'Bathocuproine-Mediated Copper Transport through Liquid Membrane Driven by Redox Potential', *Separation Science and Technology*, 17: 10, 1237 — 1252

To link to this Article: DOI: 10.1080/01496398208060647

URL: <http://dx.doi.org/10.1080/01496398208060647>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Bathocuproine-Mediated Copper Transport through Liquid Membrane Driven by Redox Potential

AKIRA OHKI

CENTER OF INSTRUMENTAL ANALYSIS

SHUGO MATSUNO, TADASHI TAKEDA, MAKOTO TAKAGI,
and KEIHEI UENO

DEPARTMENT OF ORGANIC SYNTHESIS

FACULTY OF ENGINEERING
KYUSHU UNIVERSITY
HAKOZAKI, HIGASHI-KU, FUKUOKA 812, JAPAN

Abstract

A new type of carrier-mediated copper transport system driven by redox potential was studied. The two aqueous solutions of different redox potentials were separated by a polymer-supported organic liquid membrane in which Bathocuproine (L) was dissolved as a "carrier". Copper(II) was reduced in the reducing phase to form $[\text{Cu}^{\text{I}}\text{L}_2]^+\cdot\text{X}^-$ type complex at the membrane interface and extracted. The copper complex diffused to the other side of the membrane and decomposed to form the copper(II) species in the oxidizing phase, leaving the carrier in the membrane phase. The nature of the system under various operational conditions (pH, redox agents, pairing anions X^- , coexisting metals, etc.) was studied and compared with the metal transport system which can take place without the intervention of redox reaction. An extension of these transport reactions to water-in-oil-in-water type emulsion system was studied.

INTRODUCTION

A selective ion transport through a liquid membrane is one of the current topics in separation chemistry (1-3). It introduces a new principle and a technique to separation and analytical chemistry. The energy for the ion

transport is usually supplied by a pH gradient or more generally an ion concentration gradient across the membrane. However, any chemical potential between two aqueous phases can, in principle, be applied to drive the transport system.

A redox potential-driven ion transport through a liquid membrane has been studied in the last few years from a bioenergetic point of view as well as for possible application in practical separations. The system concerns an electron flow through the membrane which is coupled with a cation flow (in the same direction) or an anion flow (in the counter direction). Several groups of investigators have described this type of transfer system using lipophilic electron carriers such as quinones (4, 5), ferrocenes (6), a metal-porphyrin complex (7), *N,N,N',N'*-tetramethylphenylenediamine (8), a nickel-bisdiethyleneglycol complex (9, 10), or a metal-Bathocuproine complex (11).

In all of the systems reported up to now which are driven by a redox potential, the species transported do not themselves undergo redox reaction. They are simply transferred through the membrane in the form of an ion-pair solubilized in the membrane phase. The lipophilic electron carriers

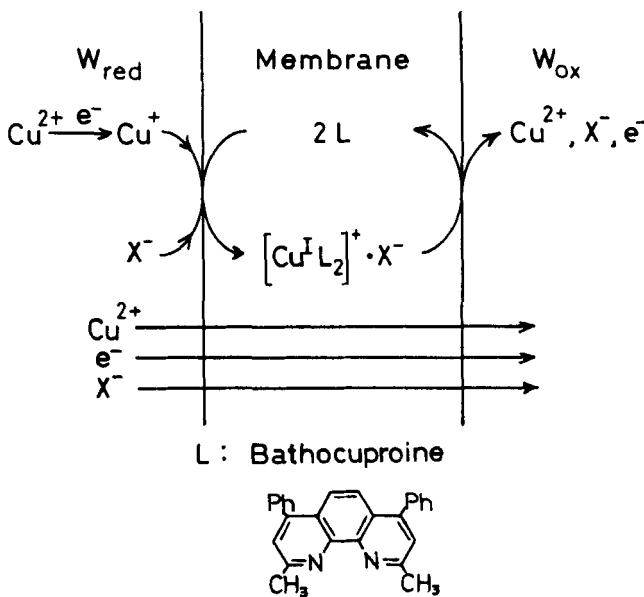


FIG. 1. Bathocuproine-mediated copper(I) transport driven by redox potential (Cu^{I} route). W_{red} , reducing aqueous phase; W_{ox} , oxidizing aqueous phase; membrane, diphenyl ether supported on a porous polypropylene film.

mentioned above are bound in the membrane phase and repeatedly serve as a pairing ion. Accordingly, the systems hitherto reported are not applicable to the transport of metal ions which themselves may undergo redox reactions between several valence states. These metal ions, however, may be transferred across the membrane in a principle somewhat different from that mentioned above by taking advantage of the variation in the valence state.

Bathocuproine (2,9-demethyl-4,7-diphenyl-1,10-phenanthroline, L) is a well-known extraction agent specific to copper with the aid of a reducing agent (12). Copper(II) is reduced to copper(I) in the presence of Bathocuproine and a reducing agent, and the resultant cationic complex $[\text{Cu}^{\text{I}}\text{L}_2]^+$ is readily extractable to organic solvents forming a lipophilic ion-pair $[\text{Cu}^{\text{I}}\text{L}_2]^+\cdot\text{X}^-$ with an appropriate anion X^- . On contact with an oxidizing agent, the complex in organic solution is decomposed to liberate copper(II) and a pairing anion in aqueous solution, leaving L in organic solution (Fig. 1) (13).

In the present report the Bathocuproine-mediated copper transport (13) and the related metal transport reactions are studied in detail in a polymer-supported liquid membrane system as well as in a liquid surfactant membrane system.

EXPERIMENTAL

Material

Bathocuproine was of analytical grade from Dojindo Lab. Ltd. Commercial diphenyl ether was purified by distillation. Other chemicals were of reagent grade and used as received.

Supported Liquid Membrane

The apparatus used was the same as that described in the previous paper (10). The cell consisted of two compartments, W_{red} and W_{ox} (each of 150 mL capacity), which were separated by a liquid membrane supported by a microporous polypropylene film (Duragard 2500, Polyplastics Ltd.; thickness 25 μm , porosity 45%, maximum pore size 0.4 \times 0.04 μm). The effective membrane area was 28 cm^2 . A diphenyl ether solution (\sim 0.04 mL) containing a carrier was applied to the film.

In a typical run the W_{red} compartment was initially filled with a buffered aqueous solution (0.5 M ammonium acetate, 1 M = 1 mol/dm³) of 0.1 mM copper(II) nitrate, 5 mM hydroxylamine sulfate, and 10 mM potassium

chloride, while the W_{ox} compartment was filled with a buffered aqueous solution (0.5 M ammonium acetate) not containing a specific oxidizing agent. Atmospheric oxygen dissolved in the W_{ox} phase acted as an oxidizing agent. The membrane phase (diphenyl ether solution) contained 10 mM Bathocuproine. The aqueous solutions were stirred at 30°, and aliquots of the solutions were taken periodically and analyzed. The copper and other metal concentrations were determined by atomic absorption photometry using a Nippon Jarrel-Ash AA-1 instrument.

Liquid Surfactant Membrane

The membrane system is made up of water-in-oil-in-water (w/o/w) emulsion, i.e., oil-capsuled droplets of water are dispersed in water by means of surfactants (Fig. 2). The inner aqueous solution was named as the W_{in} phase while the outer aqueous solution was the W_{out} phase.

A typical run was performed as follows. The W_{in} phase consisted of a buffered aqueous solution [10 mM MES-sodium hydroxide, pH 5.5, MES: 2(N-morpholino)ethanesulfonic acid] containing 3 mM copper(II) sulfate, 10 mM potassium chloride, and 5 mM ammonia. The W_{ox} phase was simply a buffered aqueous solution (10 mM MES-sodium hydroxide, pH 5.5). The membrane phase (toluene solution) contained 2 wt-% of Span 80, a nonionic surfactant, and 0.5 mM Bathocuproine. In the first step the water-in-oil (w/o) emulsion was made from the aqueous solution (W_{in} phase, 25 mL) and the toluene solution (membrane phase, 50 mL) with the aid of a magnetic stirrer and an internal ultrasonic irradiation (2 min). Then, 50 mL of the w/o

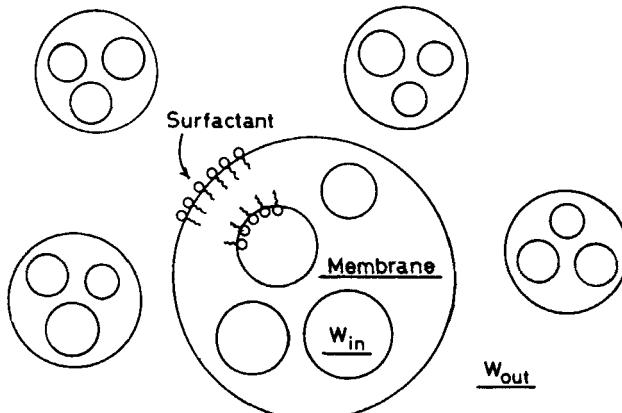


FIG. 2. Schematic representation of the liquid surfactant membrane.

emulsion was added to 200 mL of the W_{ox} phase in a reaction vessel (a flat-bottomed cylindrical glass cell; internal diameter 90 mm, depth 120 mm). The mixture was mechanically stirred at 25°C at a speed of 200 rpm giving the desired w/o/w emulsion. At this stage the transport reaction starts. Aliquots of the w/o/w emulsion were taken with time intervals. The W_{out} phase was then separated from the w/o emulsion (standing for 20–30 min) and analyzed for metal concentrations.

RESULTS AND DISCUSSION

Polymer-Supported Liquid Membrane

Figure 3 shows the change in the concentration of copper ion in the W_{red} phase and in the W_{ox} phase against time under various conditions. The figure illustrates some fundamental properties of the transport system. The copper transport takes place both in the presence and in the absence of redox potential. The former transport which proceeds via the Cu^I species (Cu^I route, Fig. 1) is greatly accelerated by the addition of chloride ion, while the latter via the Cu^{II} species (Cu^{II} route) is affected only slightly.

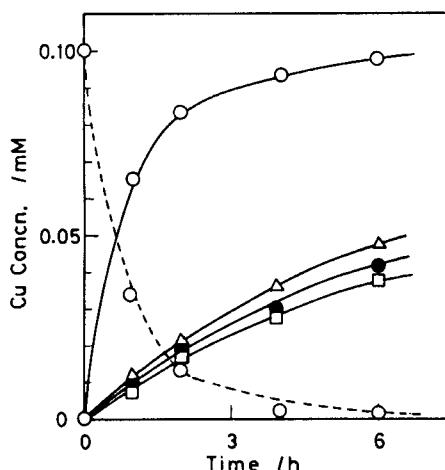


FIG. 3. Change in the copper concentration in W_{ox} phase (full line) and in W_{red} phase (dotted line) against time under various initial conditions. (○) The complete system, i.e., W_{red} contained 0.1 mM Cu(NO₃)₂, 5 mM (NH₃OH)₂SO₄, 10 mM KCl, and 0.5 M CH₃COONH₄, while W_{ox} contained 0.5 M CH₃COONH₄. (●) The salt (NH₃OH)₂SO₄ was excluded from the complete system. (△) KCl excluded. (□) (NH₃OH)₂SO₄ and KCl excluded.

The mechanism of the divalent copper transport (Cu^{II} route) is illustrated in Fig. 4. It can be shown that the complex of type $\text{M}^{\text{II}}\text{LCl}_2$ is readily extracted into organic solvents for ($\text{M} =$) copper, zinc, and cadmium. In fact, the latter two metal salts were found to be transported across the liquid membrane under their concentration gradient. Nickel(II) did not undergo this reaction since this metal cannot be extracted under the relevant reaction conditions. This type of metal transport has recently been described by Sugiura and Shinbo (14).

Thermodynamically, the Cu^{II} route can work until the chemical potential of the salt $\text{M}^{\text{II}}\text{X}_2$ in the two aqueous phases becomes equal, i.e., $[\text{M}^{2+}]_{W_1}[\text{X}^-]_{W_1}^2 = [\text{M}^{2+}]_{W_2}[\text{X}^-]_{W_2}^2$ in a simplified expression in concentration terms. Thus the transport process is driven by the increase in concentration of the metal and the anion in the W_1 phase. A result that the rate in the Cu^{II} route transport (Fig. 3) increased on addition of potassium chloride is consistent with this consideration, and in fact the copper(II) could be concentrated in the W_2 phase against its concentration gradient when the concentration of potassium chloride is further raised in the W_1 phase.

The equilibrium conditions for the Cu^{I} route transport is similarly given by $[\text{Cu}^+]_{W_{\text{red}}}[\text{X}^-]_{W_{\text{red}}} = [\text{Cu}^+]_{W_{\text{ox}}}[\text{X}^-]_{W_{\text{ox}}}$, and the transport process is driven by the concentration of copper(I) and the anion. The presence of reducing agent increases the concentration of the Cu^{I} species in the W_{red} phase, while the concentration of the low valent copper remains virtually zero in W_{ox} . Thus it is quite reasonable under such conditions that copper is concentrated in the W_{ox} phase as observed in Fig. 3.

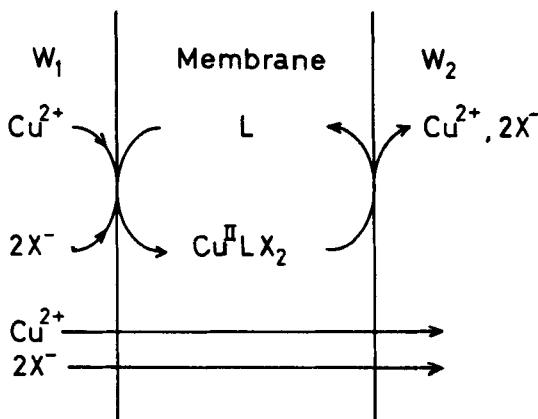


FIG. 4. Bathocuproine-mediated copper(II) transport (Cu^{II} -route).

A competitive transport of copper with other divalent metal ions was studied under conditions similar to those in Fig. 3. The transport of zinc and cadmium takes place only via the M^{II} route, and the process was not influenced by the presence of reducing agents. In the absence of reducing agents, these metals were transported 30–40% more efficiently than copper in a competitive experiment. However, on addition of reducing agents, the initial rate of zinc (or cadmium) transport was suppressed to about one-tenth of the previous rate. The transport of these metals took place only after ~90% of the copper was transferred from the W_{red} to the W_{ox} phase. This is explained in the following manner. Bathocuproine is a common carrier for copper and zinc (cadmium), but in the presence of reducing agents the carrier is preferentially occupied by the copper(I) species, and as a result only a limited amount of the carrier is available for a zinc (cadmium) transport. In this notion, the transport under reducing conditions is dominated by the Cu^I route.

The effect of pH on the rate of copper transport was investigated. As shown in Fig. 5, the most effective transport was observed at pH 7 in both aqueous phases. This fact is understood by considering the protonation of the carrier in the low pH region and the complexation of copper by ammonia in the W_{red} phase in the high pH region. Both factors tend to inhibit the

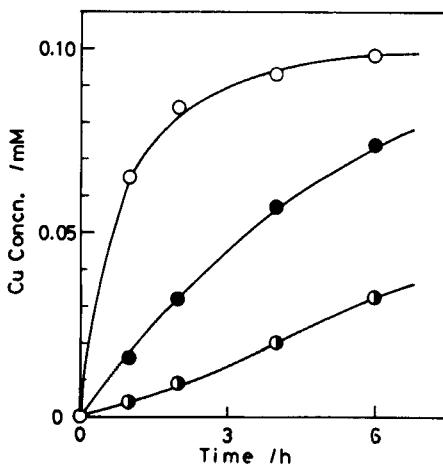


FIG. 5. Effect of pH on the rate of copper transport. Change in the copper concentration in W_{ox} phase against time under various initial conditions. (○) W_{red} contained 0.1 mM $Cu(NO_3)_2$, 5 mM $(NH_3OH)_2SO_4$, 10 mM KCl, and 0.5 M CH_3COONH_4 (pH 7), while W_{ox} contained 0.5 M CH_3COONH_4 (pH 7). (●, ◐) The pH was adjusted by 0.5 M $CH_3COONH_4-NH_3$ (●, pH 9.2) and 0.5 M $CH_3COOH-CH_3COONa$ (◐, pH 4.7).

extraction of copper into the membrane phase. As to the effect of carrier concentration, the tenfold decrease in Bathocuproine concentration in the membrane phase resulted in about a fivefold decrease in the initial rate of copper transport.

The effect of anionic species in the W_{red} phase on the Cu^{I} route transport rate is shown in Fig. 6. The rate decreased in the order chloride > nitrate > perchlorate > picrate. The determination of the picrate ion indicated that the anion was cotransported with copper in a 1:1 molar ratio as expected. The large accelerating effect of chloride ion is studied in more detail in Fig. 7.

The results in Figs. 6 and 7 indicate that in addition to the redox potential the chloride ion potential across the membrane is essential to effective copper transport. On the other hand, the addition of a so-called lipophilic anion, such as picrate and perchlorate, remarkably depressed the copper transport. The ion pair between $\text{Cu}^{\text{I}}\text{L}_2^+$ and such an anion seems to be too lipophilic to be released at the W_{ox} -membrane interface. A possible assistance by the oxidizing agent to the metal releasing step was studied using various oxidizing agents such as ferricyanide, dichromate, permanganate, hypochlorite, or a $\text{Fe}^{\text{II}}\text{-H}_2\text{O}_2$ reagent. However, any of these reagents could not increase the rate of copper transport, suggesting that the rate was controlled by the back-extraction or the stripping step of the complex $[\text{Cu}^{\text{I}}\text{L}_2]^+\cdot\text{X}^-$ at

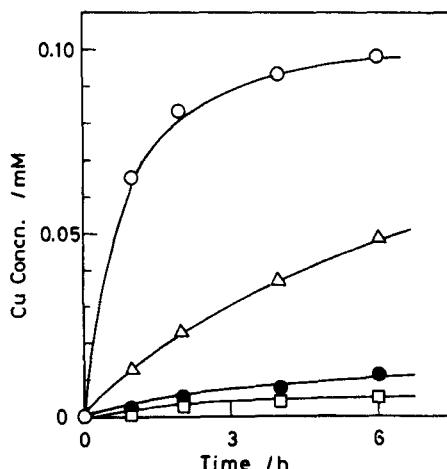


FIG. 6. Effect of anionic species in W_{red} phase on the rate of copper transport. Change in the copper concentration in W_{ox} phase against time under various initial conditions. W_{red} contained 0.1 mM $\text{Cu}(\text{NO}_3)_2$, 5 mM $(\text{NH}_3\text{OH})_2\text{SO}_4$, and 0.5 M $\text{CH}_3\text{COONH}_4$, while W_{ox} contained 0.5 M $\text{CH}_3\text{COONH}_4$; 10 mM KCl (O), 10 mM KNO_3 (Δ), 10 mM NaClO_4 (●) or 1 mM sodium picrate (□) was added in W_{red} phase.

the membrane- W_{ox} interface. Lamb et al. reported that the complexes too stable in the membrane phase had a lower efficiency in the carrier-mediated transport reactions (15). In this context it is possible that the ion-pair complex $[\text{Cu}^{\text{I}}\text{L}_2]^+\cdot\text{Cl}^-$ had a suitable lipophilicity for the extraction and the stripping processes at the water-membrane interfaces. Moreover, the chloride anion provided an added advantage in that it stabilizes the copper(I) species in aqueous solution, resulting in the accumulation of the univalent copper in the W_{red} phase and thereby assisting the extraction and the subsequent processes to proceed smoothly.

The effect of anionic species on the Cu^{II} route is shown in Fig. 8. The rate of copper transport decreased in the order picrate > perchlorate > chloride > nitrate, indicating that the transfer of divalent copper is accelerated by the addition of lipophilic anions. Especially when the picrate was used, the copper concentration in the W_2 phase exceeded that in the W_1 phase within 4 h. Thus the effect of anion on the Cu^{II} route is approximately opposite to that on the Cu^{I} route. Sulfate, a divalent anion, did not work as a cotransport anion.

The scheme in Fig. 4 states that the molar ratio of copper to the anion cotransported is 1:2. The determination of picrate ion under conditions similar to those in Fig. 8 indicated that the ratio was actually 1:2.5–2.7.

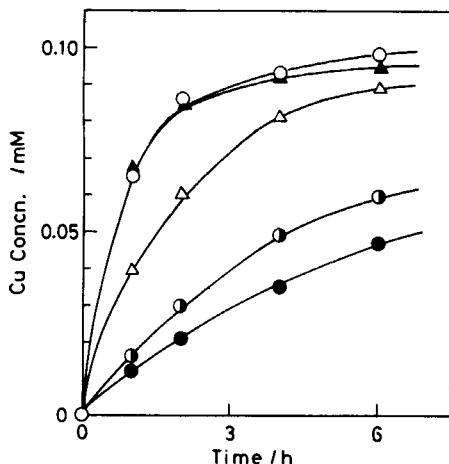


FIG. 7. Effect of chloride concentration in W_{red} phase on the rate of copper transport. Change in the copper concentration in W_{ox} phase against time under various initial conditions. W_{red} contained 0.1 mM $\text{Cu}(\text{NO}_3)_2$, 5 mM $(\text{NH}_3\text{OH})_2\text{SO}_4$, and 0.5 M $\text{CH}_3\text{COONH}_4$, while W_{ox} contained 0.5 M $\text{CH}_3\text{COONH}_4$; 10 mM (○), 5 mM (▲), 0.6 mM (△), 0.1 mM (●), or no (●) KCl was added in W_{red} phase.

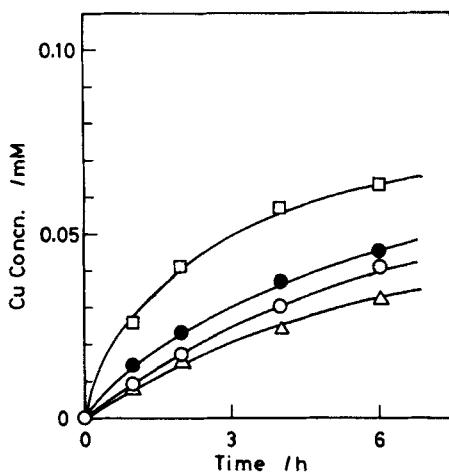


FIG. 8. Effect of anionic species in W_1 phase on the rate of copper transport via Cu^{II} route. Change in the copper concentration in W_2 phase against time under various initial conditions. W_1 contained $0.1 \text{ mM Cu}(\text{NO}_3)_2$ and $0.5 \text{ M CH}_3\text{COONH}_4$, while W_2 contained $0.5 \text{ M CH}_3\text{COONH}_4$; 10 mM KCl (\circ), 10 mM KNO_3 (\triangle), 10 mM NaClO_4 (\bullet), or $1 \text{ mM sodium picrate}$ (\square) was added in W_1 phase.

Picrate ion was extracted to some extent under these conditions by forming the ion-pair $\text{HL}^+ \cdot \text{picrate}^-$, and the transport of picrate according to this reaction overlapped the picrate transport by the Cu^{II} route.

Application to Liquid Surfactant Membrane

The liquid surfactant membrane technique has been developed by Li (1-3, 16-18). With this technique a thin liquid membrane with a large interface area for the extraction and the stripping reactions is obtained. Many publications describe its application to the concentration of metals from dilute aqueous solutions (1-3), and it is one of the promising methods for industrial metal recovery processes.

We attempted to apply the Bathocuproine-mediated Cu^{I} route copper transport to the liquid surfactant membrane system. Since we failed to find suitable oxidizing agents to be introduced in the internal aqueous phase, our preliminary experiment was designed in such a way that the oxidizing agent (air) was applied to the external solution, i.e., W_{in} and W_{out} phases were assigned to the reducing and the oxidizing phases, respectively. If the Cu^{I} route transport mechanism works ideally, copper ions are transported from the W_{in} to the W_{out} phase with a simultaneous flow of both electrons and anions in the same direction, i.e., from the W_{in} to the W_{out} phase.

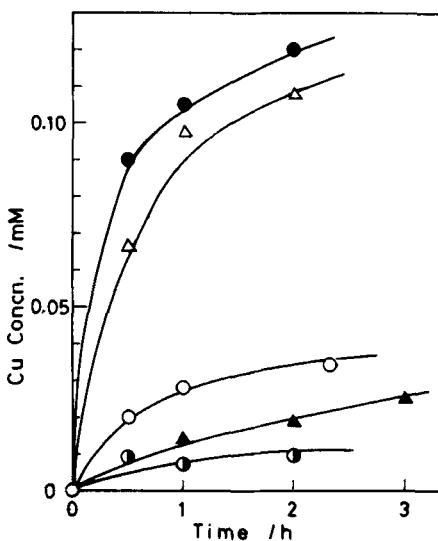


FIG. 9. Change in the copper concentration in W_{out} phase against time under various conditions. (○) W_{in} contained 3 mM CuSO₄, 5 mM NH₃, and 10 mM MES-NaOH, while W_{out} contained 10 mM MES-NaOH; 0.5 mM Bathocuproine was present in the membrane (reference conditions). The salts, 10 mM KCl (●), 10 mM KNO₃ (△), or 10 mM KCl and 5 mM (NH₃OH)₂SO₄ (●) were further added in W_{in} phase under the reference conditions. (▲) Bathocuproine was excluded from the membrane under the reference conditions.

Figure 9 shows the change in the concentration of copper ion in the W_{out} phase against time under various conditions. In the absence of Bathocuproine in the membrane phase, the copper concentration in the W_{out} phase reached $1.7 \times 10^{-5} M$ after 2 h. This is due to the breakdown of the emulsion membrane and the resulting leakage of the internal copper to the external W_{out} phase during the stirring process. Taking account of the volume ratio of the W_{out} and W_{in} phases ($\sim 12:1$), the degree of emulsion breakdown corresponded to about 7% loss of the W_{in} phase during 2 h of stirring.

On the introduction of Bathocuproine in the membrane phase, a higher rate of copper transport to the W_{out} phase was observed. When chloride ion was further added to the W_{in} phase, the rate of copper transport increased greatly, reaching $1.2 \times 10^{-4} M$ copper in the W_{out} phase after 2 h. The amount of copper transported was about 40% of that initially added to the W_{in} phase. However, contrary to our expectation, the addition of the reducing agent hydroxylamine to the W_{in} phase brought about a great depression in the rate of copper transport, and the amount of copper detected in the W_{out} phase was less than that in the absence of the carrier (Fig. 9). Obviously, the reducing agent acted as an inhibitor rather than as a promoter. Similar results were obtained under some other experimental conditions.

One reason for the inhibitory effect of the reducing agent (Fig. 9) is obviously the leakage of the reducing agent from the W_{in} phase on the emulsion membrane breakdown. Since the W_{out} phase did not contain a strong oxidizing agent, hydroxylamine which leaked into the W_{out} phase remained undecomposed and hence eliminated the redox potential difference between the two phases. Another reason may be the strong affinity of the copper(I) complex to the membrane phase. The hydroxylamine in the W_{out} phase could be decomposed by the addition of sodium hypochlorite, but the copper transport rate was not enhanced. The situation seems to be similar to that observed in Fig. 6 for the perchlorate and picrate cotransport. Thus the copper transport is much more efficient in the absence than in the presence of a redox potential, and the transport process is obviously taking place via the Cu^{II} route.

[Univalent copper complex of Bathocuproine is brown-orange colored, and the presence of Cu^I -route is always indicated by this coloration. However, in the liquid surfactant membrane system, the emulsion assumed a brownish color even in the absence of reducing agent. Spectrophotometric study showed that the surfactant (or some ingredients of the surfactant) partially acted as a reducing agent. The extent of this reaction was minor, and the carrier could play a major role in the copper transport via the Cu^{II} route.]

Accordingly, the anion concentration gradient from the W_{out} to the W_{in} phase is expected to concentrate copper ions from the W_{out} into the W_{in} phase. As shown in Fig. 10, when 100 mM nitrate ion was initially added in the W_{out} phase, the copper concentration in the W_{out} phase decreased from 1 to 0.5 mM after 2 h, whereas in the absence of the added anion in the W_{out} phase the decrease in the copper concentration was only slight. The emulsion in the presence of 100 mM potassium nitrate was too viscous to disperse in the W_{out} phase under normal operational conditions, and hence an elevated stirring speed (270 rpm) was used in this experiment. After 2 h stirring the emulsion phase was separated from the W_{out} phase, dissolved in methanol containing acetylacetone to get a homogeneous solution, and analyzed for copper. The amount of copper present in this solution was comparable to the amount of copper decrease in the W_{out} phase. The reduction of nitrate concentration in the W_{out} phase caused a lowering of the rate of this copper transport.

Figure 11 shows the competitive transport of copper and zinc in the liquid surfactant membrane. The fairly high rate of copper transport in comparison with that in Fig. 9 is due to the larger concentration of univalent anion added in the W_{in} phase. As previously described, zinc was transported in preference to copper in the supported liquid membrane when the redox potential was not applied. However, in this liquid surfactant membrane system, the transport

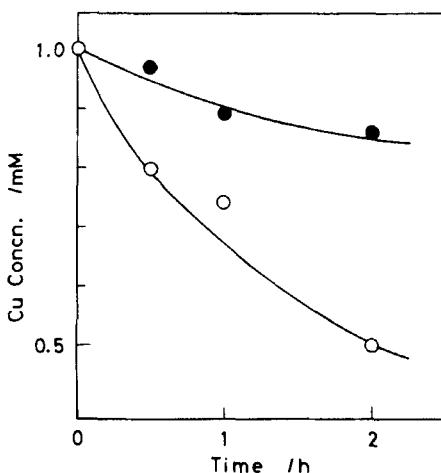


FIG. 10. Change in the copper concentration in W_{out} phase against time under two initial conditions. (○) W_{in} contained 50 mM K_2SO_4 , 5 mM NH_3 , and 10 mM MES-NaOH, while W_{out} contained 1 mM $CuSO_4$, 100 mM KNO_3 , 5 mM NH_3 , and 10 mM MES-NaOH; 0.5 mM Bathocuproine was present in the membrane. (●) The salts KNO_3 and K_2SO_4 were eliminated in the former conditions. Stirring, 270 rpm.

rate of copper was faster than that of zinc. Sugiura et al. reported that the rate of copper transport surpassed that of zinc in a bulk 1,2-dichloroethane membrane system using the same carrier (14). The toluene-surfactant membrane appears to be similar in the extraction and stripping behavior to a dichloroethane membrane rather than to a diphenyl ether membrane.

Redox Reaction as a Driving Potential for Ion Separation

A proton concentration difference or a pH gradient has been the most widely studied as a driving potential for ion separation by liquid membrane techniques. The proton concentration difference is peculiar in that a free energy as much as $RT \ln (1/10^{-14})$ is readily available using, e.g., 1 M sodium hydroxide and 1 M hydrochloric acid (energy released on the neutralization of acid and base). The free energy associated with a difference in concentration of ordinary salt solutions is much smaller, which may be around the order of $RT \ln (1/10^{-4})$, since the salt concentrations above 1 M or below $10^{-4} M$ are rather unrealistic in practice. In this respect it is quite understandable that the pH gradient has found wide application as a powerful and versatile driving potential in ion separation.

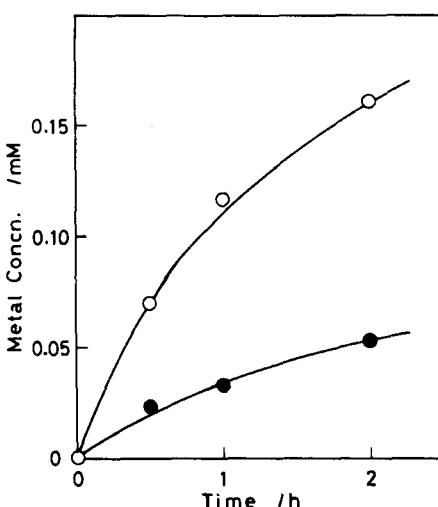


FIG. 11. Competitive transport of copper and zinc. Change in the concentration of metal ion (Cu , O ; Zn , \bullet) in W_{out} phase against time. W_{in} contained 3 mM $\text{Cu}(\text{NO}_3)_2$, 3 mM $\text{Zn}(\text{NO}_3)_2$, 10 mM KCl, 10 mM NH_3 , and 10 mM MES-NaOH, while W_{out} contained 10 mM MES-NaOH; 0.5 mM Bathocuproine was present in the membrane.

[It should be reminded that in Fig. 10 about 50% of copper in the W_{out} phase was concentrated in the W_{in} phase by using 100 mM potassium nitrate in the W_{out} phase. If 50 mM sulfuric acid is used in the W_{in} phase along with benzoylacetone as a carrier in the membrane phase, more than 80% of copper is readily concentrated in the W_{in} phase under similar reaction conditions. This exemplifies the effectiveness of the pH gradient-driven process (19).]

Redox reactions can give a free energy comparable in magnitude to the neutralization reaction, as one can easily conceive from tables of standard electrode potentials. However, the reactions are generally not simple, sometimes involving side reactions and quite often requiring catalysis for the reactions to proceed smoothly. This seems to limit seriously the practical usability of the redox energy to separation problems such as those treated in the present study. [The following exemplifies some of the difficulty in searching for a wider range of oxidizing agents for the Cu^{I} route transport. The use of ferricyanide as an oxidizing agent produced precipitates of ferricyanide complexes of copper or zinc, which were avoided only by the addition of excess ammonia. Permanganate gave precipitates of manganese dioxide. Hypobromite produced, under neutral pH conditions, a considerable amount of free bromine which is quite soluble in organic liquid membranes.

Cerium(IV) could be used only at such low pH regions that Bathocuproine could not work as a carrier.] In this respect, the use of redox potential cannot be as versatile as pH gradient. The redox potential, however, can be generated through photochemical processes, to which much research effort is currently devoted (20). The coupling of a photochemical redox reaction and the ion separation process is worth further studying (5, 13).

CONCLUSION

Using Bathocuproine as a carrier, the uphill transport of copper ion through a liquid membrane driven by redox potential was realized. The process involved the extraction of the univalent copper complex into the organic membrane phase (Cu^I route), and, in general, was in competition with another copper transport mechanism which took place without the intervention of a redox reaction (Cu^{II} route). The Cu^I route is driven by a redox potential as well as by an anion concentration potential, while the Cu^{II} route is driven only by the latter potential. Both routes can be operated using a polymer-supported, simple liquid membrane, but the Cu^I route could not be realized in a liquid surfactant emulsion membrane system. Breakage of the emulsion membrane and failure in finding the proper combination of redox reagents are the causes for failure of the emulsion system. Finding the proper redox couples is the key to giving practical value to the redox potential-driven ion separation processes in a liquid surfactant membrane system.

Acknowledgments

The authors are grateful to Professors F. Nakashio and K. Kondo as well as Mr J. Irie for their helpful suggestions and discussions in the experiment on the liquid surfactant membrane system. The present work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture.

REFERENCES

1. W. Halwachs and K. Schügerl, *Chem.-Ing.-Tech.*, **50**, 767 (1978).
2. M. Takagi and K. Ueno, *Maku*, **4**, 348 (1979).
3. R. Marr and A. Kopp, *Chem.-Ing.-Tech.*, **52**, 339 (1980).
4. S. S. Anderson, I. G. Lyle, and R. Paterson, *Nature*, **259**, 147 (1976).
5. J. J. Grimaldi, S. Boileau, and J. M. Lehn, *Ibid.*, **265**, 229 (1977).
6. T. Shinbo, M. Sugiura, N. Kamo, and Y. Kobatake, *Chem. Lett.*, p. 1177 (1979).
7. I. Tabushi and M. Funakura, *J. Am. Chem. Soc.*, **98**, 4684 (1976).
8. T. Shinbo, K. Kurihara, Y. Kobatake, and N. Kamo, *Nature*, **270**, 277 (1977).

9. J. J. Grimaldi and J. M. Lehn, *J. Am. Chem. Soc.*, **101**, 1333 (1979).
10. A. Ohki, M. Takagi, and K. Ueno, *Chem. Lett.*, p. 1591 (1980).
11. K. Maruyama and H. Tsukube, *Ibid.*, p. 1133 (1981).
12. G. F. Smith and D. H. Wilkins, *Anal. Chem.*, **25**, 510 (1953).
13. S. Matsuno, A. Ohki, M. Takagi, and K. Ueno, *Chem. Lett.*, p. 1543 (1981).
14. M. Sugiura and T. Shinbo, *Bull. Chem. Soc. Jpn.*, **52**, 2209 (1979).
15. J. D. Lamb, J. J. Christensen, J. L. Oscarson, B. L. Nielsen, B. W. Asay, and R. M. Izatt, *J. Am. Chem. Soc.*, **102**, 6820 (1980).
16. N. N. Li, U.S. Patent 3,410,794 (November 12, 1978).
17. N. N. Li, *AIChE J.*, **17**, 459 (1971).
18. N. N. Li and A. L. Shrier, *Recent Advances in Separation Science*, Vol. 1, CRC Press, Cleveland, Ohio, 1972, pp. 163.
19. K. Kondo, K. Kita, I. Koida, J. Irie, and F. Nakashio, *J. Chem. Eng. Jpn.*, **12**, 203 (1979).
20. H. T. Tien, *Sep. Sci. Technol.*, **15**, 1035 (1980).

Received by editor January 26, 1982